Drifting sub-pulse analysis using the two-dimensional Fourier transform

نویسندگان

  • R. T. Edwards
  • B. W. Stappers
چکیده

The basic form of drifting sub-pulses is that of a periodicity whose phase depends (approximately linearly) on both pulse longitude and pulse number. As such, we argue that the two-dimensional Fourier transform of the longitude-time data (called the Two-Dimensional Fluctuation Spectrum; 2DFS) presents an ideal basis for studies of this phenomenon. We examine the 2DFS of a pulsar signal synthesized using the parameters of an empirical model for sub-pulse behaviour. We show that the transform concentrates the modulation power to a relatively small area of phase space in the region corresponding to the characteristic frequency of sub-pulses in longitude and pulse number. This property enables the detection of the presence and parameters of drifting sub-pulses with great sensitivity even in data where the noise level far exceeds the instantaneous flux density of individual pulses. The amplitude of drifting sub-pulses is modulated in time by scintillation and pulse nulling and in longitude by the rotating viewing geometry (with an envelope similar to that of the mean pulse profile). In addition, subpulse phase as a function of longitude and pulse number can differ from that of a sinusoid due to variations in the drift rate (often associated with nulling) and through the varying rate of traverse of magnetic azimuth afforded by the sight line. These deviations from uniform sub-pulse drift manifest in the 2DFS as broadening of the otherwise delta-function response of a uniform sinusoid. We show how these phase and amplitude variations can be extracted from the complex spectrum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of Riboflavin by Nanocomposite Modified Carbon Paste Electrode in Biological Fluids Using Fast Fourier Transform Square Wave Voltammetry

Herein, fast Fourier transformation square-wave voltammetry (FFT-SWV) as a novel electrochemical determination technique was used to investigate the electrochemical behavior and determination of Riboflavin at the surface of a nanocomposite modified carbon paste electrode. The carbon paste electrode was modified by nanocomposite containing Samarium oxide (Sm2O3)/reduced gra...

متن کامل

Measurement of Plain Weave Fabrics Density Using Fourier Transforms

Warp and weft spacing and its coefficient of variation affect the physical properties of fabrics such as fabric hand, frictional and mechanical properties. In this paper the weft and warp spacing and its coefficient of variation for plain weave is calculated using Fourier transforms. Different methods have been used in this work including autocorrelation function. First, two dimensional power s...

متن کامل

Measurement of Plain Weave Fabrics Density Using Fourier Transforms

Warp and weft spacing and its coefficient of variation affect the physical properties of fabrics such as fabric hand, frictional and mechanical properties. In this paper the weft and warp spacing and its coefficient of variation for plain weave is calculated using Fourier transforms. Different methods have been used in this work including autocorrelation function. First, two dimensional power s...

متن کامل

Free and Forced Transverse Vibration Analysis of Moderately Thick Orthotropic Plates Using Spectral Finite Element Method

In the present study, a spectral finite element method is developed for free and forced transverse vibration of Levy-type moderately thick rectangular orthotropic plates based on first-order shear deformation theory. Levy solution assumption was used to convert the two-dimensional problem into a one-dimensional problem. In the first step, the governing out-of-plane differential equations are tr...

متن کامل

Time-Discontinuous Finite Element Analysis of Two-Dimensional Elastodynamic Problems using Complex Fourier Shape Functions

This paper reformulates a time-discontinuous finite element method (TD-FEM) based on a new class of shape functions, called complex Fourier hereafter, for solving two-dimensional elastodynamic problems. These shape functions, which are derived from their corresponding radial basis functions, have some advantages such as the satisfaction of exponential and trigonometric function fields in comple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002